Math 31 - Homework 1

Due Friday, June 28

Easy

1. Find $\operatorname{gcd}(a, b)$ and express $\operatorname{gcd}(a, b)$ as $m a+n b$ for:
(a) $(116,-84)$
(b) $(85,65)$
(c) $(72,26)$
(d) $(72,25)$
2. Verify that the following elements of $\left\langle\mathbb{Z}_{n}, \cdot\right\rangle$ are invertible, and find their multiplicative inverses.
(a) 4 in \mathbb{Z}_{15}
(b) 14 in \mathbb{Z}_{19}
3. In each case, determine whether $*$ defines a binary operation on the given set. If not, give reason(s) why $*$ fails to be a binary operation.
(a) $*$ defined on \mathbb{Z}^{+}by $a * b=a-b$.
(b) $*$ defined on \mathbb{Z}^{+}by $a * b=a^{b}$.
(c) $*$ defined on \mathbb{Z} by $a * b=a / b$.
(d) $*$ defined on \mathbb{R} by $a * b=c$, where c is at least 5 more than $a+b$.
4. Determine whether the binary operation $*$ is associative, and state whether it is commutative or not.
(a) $*$ defined on \mathbb{Z} by $a * b=a-b$.
(b) $*$ defined on \mathbb{Q} by $a * b=a b+1$.
(c) $*$ defined on \mathbb{Z}^{+}by $a * b=a^{b}$.
5. [Saracino, Section 1, \#1.9] If S is a finite set, then we can define a binary operation on S by writing down all the values of $s_{1} * s_{2}$ in a table. For instance, if $S=\{a, b, c, d\}$, then the following gives a binary operation on S.

$*$	a	b	c	d
a	a	c	b	d
b	c	a	d	b
c	b	d	a	c
d	d	b	c	a

Here, for $s_{1}, s_{2} \in S, s_{1} * s_{2}$ is the element in row s_{1} and column s_{2}. For example, $c * b=d$. Is the above binary operation commutative? Is it associative? (Note: The sort of table described in this problem is sometimes called a Cayley table.)
6. Compute the Cayley table for $\left\langle\mathbb{Z}_{6},+_{6}\right\rangle$.

Medium

7. Suppose that $*$ is an associative and commutative binary operation on a set S. Show that the subset

$$
H=\{a \in S: a * a=a\}
$$

of S is closed under *. (The elements of H are called idempotents for *.)

