Math 31 - Homework 1

Due Friday, June 28

Easy

- **1.** Find gcd(a, b) and express gcd(a, b) as ma + nb for:
 - (a) (116, -84)
 - (b) (85, 65)
 - (c) (72, 26)
 - (d) (72, 25)
- 2. Verify that the following elements of $\langle \mathbb{Z}_n, \cdot \rangle$ are invertible, and find their multiplicative inverses.
 - (a) 4 in \mathbb{Z}_{15}
 - (b) 14 in \mathbb{Z}_{19}

3. In each case, determine whether * defines a binary operation on the given set. If not, give reason(s) why * fails to be a binary operation.

- (a) * defined on \mathbb{Z}^+ by a * b = a b.
- (b) * defined on \mathbb{Z}^+ by $a * b = a^b$.
- (c) * defined on \mathbb{Z} by a * b = a/b.
- (d) * defined on \mathbb{R} by a * b = c, where c is at least 5 more than a + b.

4. Determine whether the binary operation * is associative, and state whether it is commutative or not.

- (a) * defined on \mathbb{Z} by a * b = a b.
- (b) * defined on \mathbb{Q} by a * b = ab + 1.
- (c) * defined on \mathbb{Z}^+ by $a * b = a^b$.

5. [Saracino, Section 1, #1.9] If S is a finite set, then we can define a binary operation on S by writing down all the values of $s_1 * s_2$ in a table. For instance, if $S = \{a, b, c, d\}$, then the following gives a binary operation on S.

*	а	b	с	d
a	a	с	b	d
b	с	a	d	b
c	b	d	a	с
d	d	b	с	a

Here, for $s_1, s_2 \in S$, $s_1 * s_2$ is the element in row s_1 and column s_2 . For example, c * b = d. Is the above binary operation commutative? Is it associative? (Note: The sort of table described in this problem is sometimes called a **Cayley table**.)

6. Compute the Cayley table for $\langle \mathbb{Z}_6, +_6 \rangle$.

Medium

7. Suppose that * is an associative and commutative binary operation on a set S. Show that the subset

$$H = \{a \in S : a * a = a\}$$

of S is closed under *. (The elements of H are called **idempotents** for *.)